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Farey sequences of spatiotemporal patterns in video feedback
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In this paper we present an experimental and theoretical description of the dynamic of spatial patterns
obtained in a video feedback loop. A video camera monitors the screen to which it is connected and can turn
around its optical axis at an anglea. Under certain conditions of brightness and magnification, this optoelec-
tronic system produces spatiotemporal patterns in the form of spots located on a circle on the screen. These
patterns are very similar to the spatial transverse modes obtained in other optical devices such as lasers or
photorefractive media. It is possible to generate stationary patterns ofn-fold symmetries for anglesa
52p/n. When the anglea varies around 2p/n, the pattern rotates with a certain frequency proportional to the
difference between 2p/n anda. We discover more general patterns at angles 2p/(p/k) with p-fold symmetry,
following the hierarchy of the Farey algorithm which theoretically can produce stationary patterns at any angle
a. Very accurate experiments were performed to observe these patterns up to the levelk56. This is the first
time a Farey tree has been observed as a sequence of spatial patterns to our knowledge. Previous observations
of this hierarchy were made only in the temporal domain.

PACS number~s!: 42.65.Sf, 45.70.Qj, 47.20.Ky, 47.54.1r
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I. INTRODUCTION

Physical systems where the ‘‘input’’ receives phase
amplitude information from the ‘‘output,’’ inducing a de
layed feedback loop, can show interesting temporal behav
including self-oscillations. Regular and chaotic spatiotem
ral regimes have been obtained in different systems w
these characteristics, arising from electronics circuits@1#, hy-
drodynamic self-oscillators@2#, optics @3–11#, and laser de-
vices @12#. A particular example of hydrodynamic nature
given by the jet instability: the shear layer instability of
free jet is convectively unstable~no noise amplification,
showing a large temporal spectrum!. When an obstacle is pu
in its path, as in the case of the geometry called ‘‘jet edg
or the ‘‘edge tone,’’ the spectrum shows a well-defined pe
as in the case of absolute instabilities. This global cohe
behavior is due to the feedback introduced between the
put and the input, by any kind of temporal delayed physi
information of acoustic or hydrodynamic nature. In las
physics, present interest is focused on the dynamics of
frequency bursts produced by reinjection of the output sig
into the cavity, especially in the case of semiconductor las
@12#. In spatially extended systems, the feedback and c
pling of oscillators can generate particular modes includ
ordered patterns. In general, the coupling mechanism~diffu-
sive or nonlocal, with specified long range correlation! and
nonlinear saturation allow for the emergence of particu
patterns. Experiments with the nonlinear photorefractive
dex, such as those with liquid crystals, where light is re
jected and where, in addition, the image is shifted, gene
spatial patterns that are the most similar to those obtaine
the experiments described in this paper@6#. This problem
including a feedback loop is an active subject of researc
the field of nonlinear dynamical systems, in order to und
stand the complex behavior of turbulence~especially spa-
tiotemporal intermittency! as well as study living system
such as neural networks and cardiac waves. This paper
PRE 611063-651X/2000/61~4!/3743~7!/$15.00
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sents an experiment that allows for the study of spatiote
poral patterns produced with a delayed feedback loop wh
most of the parameters can be controlled: the video feedb
system. Video feedback@13# is an optical loop produced
when a video camera monitors the screen to which it is c
nected. The camera can rotate around its optical axis a
anglea with respect to the monitor.

This optoelectronic arrangement can produce pecu
spatiotemporal patterns with interesting symmetries and
experimentally studied by Hausler and co-workers@14–17#,
Crutchfield@18#, and Goulobevet al. @19#. The existence of
these patterns can be explained on the basis of the feed
loop: the input~video camera! is nonlocally coupled to the
angular-shifted output~monitor!, which sends information to
the input, and so on. The saturation in the pixel intensity
the photosensitive sensor is the source of nonlinearity
addition, short range coupling is obtained by ‘‘diffusion
between an excited pixel and its nearest neighbors on
sensor, so that they are stimulated even if only one pixel w
first excited. This question has been studied in Refs.@14–
18#. Very accurate experiments on the spatiotemporal evo
tion of the patterns observed in this system are presente
this paper. An intermediate state is pointed out that follo
the Farey scenario@20–23# in the spatial symmetries gene
ated by this optoelectronic device.

II. EXPERIMENTAL SETUP

The ‘‘feedback loop’’ is obtained by making the came
watch the center of the monitor to which it is directly co
nected~Fig. 1!. The camera is a classical charge-coup
device black and white video device. It can turn around
optical axis with an anglea thanks to a microcontrol stag
which allows an angle accuracy of 1 minute. This is mu
better than what was achieved in most previous experim
on this subject. This leads to a relative accuracy of or
1024 in the case ofn54, a52p/4 ~see Sec. III for the
3743 © 2000 The American Physical Society
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pattern description!. Different pattern configurations can ap
pear depending on the parameters of this optoelectronic
tem. The main parameters are the magnification, the fo
and diaphragm aperture for the camera, and the bright
and contrast for the monitor. If the camera is defocused fr
the image on the screen, a diffusionlike effect is produc
Indeed, defocusing allows for the information of each pix
to be received by the surrounding pixels. The characteri
diffusion length is scaled by the gap between the focused
defocused positions. In our experiments, those parame
are chosen so as to get clear images and low diffusion.
ambient light is chosen to be dark. When the magnificat
ratio R is smaller than 1, the image is reduced at each lo
until the original image is lost. If the anglea is not zero, the
image is rotated with respect to the previous one, resultin
an image with a spiral aspect. This pattern is static since e
feedback loop induces exactly the same process@Fig. 2~a!#.
In contrast, when the magnification is larger than 1, ev
image of the central portion of the monitor grows to t
dimensions of the screen. Whena is not zero, the observe
pattern looks like a sudden spiral burst with irregular f
quency@Fig. 2~b!#. Under certain conditions, we obtain th
equivalent of optical developed turbulence. In this paper,

FIG. 1. Experimental setup.

FIG. 2. Three typical patterns obtained by video feedback.R is
the magnification ratio.
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are interested in the case where there is no magnification~the
ratio R is equal to unity! @Fig. 2~c!#.

III. PATTERN DESCRIPTION

When there is no magnification, the image of the scre
has the same size as the original one. Ifa50, the image is
superimposed on the previous one and a large white sp
observed.

The persistence~remaining intensity! of the camera is
30% after 40 ms~time of one feedback iteration!. The per-
sistence of the screen is 5 ms~0% remains after 40 ms! and
the delay of the electronic setup is negligible. In cons
quence, the resulting image saturates if the light intensit
enhanced because each image is superimposed on th
mainder of the preceding one. In contrast, the resulting
age vanishes if the light intensity of an image is less than
previous one. In the experiment, the parameters are ch
such that white patterns are observed on a dark backgro
Under these conditions white spots located regularly o
circle are observed@Fig. 2~c!#. This pattern can be stationar
or not ~rotation!, as explained later~Sec. V!.

When a52p/n ~where n is an integer!, the feedback
loops create ann-fold symmetry, leading ton stationary
spots located on a circle@Fig. 2~c!#. Hence, whena is ex-
actly 2p/n, the pattern is rotated at each loop by 2p/n rad,
and exactly matches the remainder of the previous one,
ing a stationary image. Figure 3 describes the transient
cess during which then spots are built. An adequate initia
perturbation~light with intensity equal to or larger than wha
is needed to reach a white spot! is needed to initiate the
processes. If the perturbation is shorter than the duratio

FIG. 3. An initial perturbation~here directly saturated light
shorter than the loop duration! propagates on the screen and 2n
feedback loops are needed to build ann-spot pattern. The casen
53 is shown here with six loops until the three spots are satura
~gray levels are inverted!, with persistenceP530%. At each loop,
one spot has intensity equal to the sum of 30% of the same
intensity in the previous loop, and the total intensity of the sp
situated just before it in the previous loop.
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TABLE I. Example of the intensityXn(t5qt,i )/X0 at time t5qt in the casen53. The intensity at timet5qt is the sum of the
intensities of the spoti 21 and the persistence of the spoti at the previous loop@time (q21)t#. The sum of the intensities of all spots at
given timet5qt is (P11)qX0.

t50 t5t t52t t53t t54t t55t t56t t57t t58t

i 51 1 P P2 P311 P414P P5110P2 P6120P311 P7135P417P P8156P5128P2

i 52 0 1 2P 3P2 4P311 5P415P 6P5115P2 7P6135P311 8P7170P418P
i 53 0 0 1 3P 6P2 10P311 15P416P 21P5121P2 28P6156P311
Total (P11)0 (P11)1 (P11)2 (P11)3 (P11)4 (P11)5 (P11)6 (P11)7 (P11)8
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one feedback loop, a certain number of loops is neede
obtain a permanent image~see Fig. 3!. If the perturbation
remains in its position for a longer time, then onlyn loops
are needed to generate the whole pattern. This longer tim
perturbation should be at least the time needed for thn
loops.

FIG. 4. ~a! IntensityX/X0 of the spot numberi 51 as a function
of the iteration numberq for the casesn53, 4, 5, and 6 spots, an
for a persistenceP530%. ~b! IntensityX/X0 of the spot numberi
5 1 as a function of the iteration numberq for the casen 5 3, and
for different persistenceP. ~c! Growth rates as a function of the
persistenceP.
to

of

It is possible to express the intensityX of each spot at the
location i at any timet as a function of the initial perturba
tion intensityX0, the numbern of spots, and the persistenc
P after one loop. An example of the intensityXn(t
5qt,i )/X0 at a timet5qt, i.e., afterq iterations~or feed-
back loops!, is given in Table I in the casen53. The inten-
sity at timet5qt is the sum of the intensities of the spoti
21 and the persistence of the spoti from the previous loop
@time (q21)t#.

The sum of the intensities of all spots at a given timet
5qt is (P11)qX0. From this observation, an expression f
the intensity of each spot has been deduced and is give

Xn~ t5qt,i !5 (
j 50

n j1 i 21<q

Cq
n j1 i 21Pq2n j2 i 11X0 . ~1!

The parameterP takes the value of zero when there is n
persistence and 1 when the persistence is total. The inten
globally increases with time as shown Fig. 4~a!. The slope of
the curve does not depend on the number of spotsn ~the
angle isa52p/n), but the time needed to reach a quasip
manent growth of the intensity is longer if the number
spots increases.

The growth of the intensity with time depends on t
persistenceP with a quasiexponential law as shown in Fi
4~b!. The analytical expression is given by the formula~1!,
which can be expressed with hypergeometric functions
the casen53, the hypergeometric function reduces to t
expression

Xn53~ t5qt,i 51!

X0
5

1

3 F S 11
1

PD q

1S 12~21!1/3
1

PD q

1S 11~21!2/3
1

PD qGP1/3. ~2!

This law tends asymptotically to an exponential growth

X

X0
5

1

n
est, ~3!

wheret5qt. The growth rates is plotted as a function ofP
in Fig. 4~c!, and shows an evolution likes;P0.9. Whatever
the initial perturbation intensity, the maximum intensi
reached by the system cannot exceed a saturation valueXmax
imposed by the system itself. In that case, the intensity
creases exponentially until the limiting valueXmax, above
which the system cannot go. This is a linear description si
the intensity is built as the sum of the intensities of the s
i 21 and the persistence of the spoti from the previous loop
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@time (q21)t#. The equation governing the temporal evol
tion of the intensityX can be written as follows:

dX

dt
5KX, ~4!

whereK is a constant, and where Eq.~3! is the solution. This
equation is similar to the linear amplitude equation of cl
sical linear stability problems. It is possible to imagin
physical systems where the persistenceP would depend on
the intensity X, leading to more complex behaviors:P
5P(X). Then, the system can reach its maximum va
Xmax with a different law. This implies nonlinearity, whic
would depend onP(X).

A new important behavior to note is that the system c
reach another equilibrium state by disturbing the basic p
tern. This disturbance is created by occulting a small par
the screen during a short time. This other pattern, station
or not, does not obey the lawn52p/a, i.e., it has a numbe
of spots different fromn or n11 although the anglea is
between 2p/n and 2p/n11. This complex feature can b
understood with the help of the Farey tree.

IV. FAREY TREE

The Farey tree is a geometrical representation of a
merical series. Between two consecutive integersn and n
11, all the nonirrational numbers are given by the ratioc/k.
Those ratios are represented on a two dimensional diag
where k, called the ‘‘level,’’ is on the ordinate axis. Th
ratios c/k are located on the abscissa with their numeri
value. The general relation to build a Farey tree is as follo

c

d
5

ka1a8

kb1b8
, ~5!

with ab2cd51, and where the coefficients are related
preceding nodes~see Ref.@24# for more details!. In the case
of two coupled oscillators@20#, the series is reduced as fo
-

e

n
t-
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ry
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m,
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lows ~Fig. 5!. From the two parentsa1 at the levelk1 anda2
at the levelk2 the new numberc at the levelk is given by the
relation

c5a11a2 , k5k11k2 . ~6!

In our casec, a1, and a2 correspond to the number o
spots. At the levelk51, the numbera1 is equal ton, anda2
is equal ton11, as described before. As already suggest
stationary patterns were observed for anglea between 2p/n
and 2p/(n11). The Farey tree representation shows that
any rational anglesa between 2p/n and 2p/n11, a station-
ary pattern exists with a number of spots different fromn or
(n11). The casea52p/n appears to be the particular ca
k51, and the other patterns correspond tok.1. For each
new pattern (k.1), its number of spotsc results from the
summation of the numbers of spotsa1 anda2 at lower levels
k1 and k2 as shown in Eq.~6!. The numberc of stationary
spots at a levelk is given byk/c5a/2p, wherek/c is the
irreducible ratio ofa/2p. In the experiment, stationary spo
up to levelk56 were observed. For example, 19 stationa
spots were obtained fora51.98 rad56/1932p ~Fig. 5!.

The level k is understood as the number of revolutio
needed to buildc spots~Fig. 6!. For instance, nine spots ca
be built by adding one spot just after the previous one, i
the first one at location 1, the second at location 2, the th
at 3, corresponding to the levelk51 at the anglea
51/932p @Fig. 6~a!#. However, nine spots can also be bu
by adding one spot by jumping over one location, i.e.,
first spot on the first location, but the second one on the th
location, the third one on the fifth location, and so on, in su
a way that the final pattern is built after exploring the co
plete circle twice, which corresponds to the levelk52 at the
anglea52/932p @Fig. 6~b!#.

Equation~1! for the intensity of the spots can be gener
ized to any levelk. The intensityXc,k(t5qt,i ) of the spoti
at the timet5qt, i.e., afterq iterations~or feedback loops!,
FIG. 5. Farey tree limited to
angles between 2p/3 and 2p/5,
up to levelk510.
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as a function of the initial intensityX0 produced at the time
t50 at the positioni 51 of the first spot, and of the persis
tenceP is as follows:

Xc,k~ t5qt,i !5 (
j 50

n j1 i 2k<q

Cq
n j1 i 2kPq2n j2 i 1kX0 . ~7!

The expressionXc,k(t5qt,i )/X0 is illustrated in Table II in
the casec57, k52. This table explains the constructio
process ofXn,k(t5qt,i ).

If the persistenceP depends on the intensity, then th
comments given in Sec. III about nonlinear evolution of t
intensity are also relevant.

What has been described until now corresponds to
cases where the spots are stationary. Nonstationary pat
have also been observed and are described in the next
tion.

V. PATTERN ROTATION

If a is slightly different from 2p/n, the spots rotate on
the screen with a constant velocity that depends on the
ference betweena and 2p/n. This motion is explained by
the fact that, after one loop, the pattern does not match
previous one exactly, but is slightly moved forward or bac
ward, so that the system gives the visual impression o
rotation of the spots. This is very similar to what is observ
when a rotating object is illuminated with a stroboscop
This rotating pattern is characterized not only by the num

FIG. 6. Two ways of creating a nine-spot pattern:~a! by build-
ing a spot on one location after the other, corresponding to the
k51 anda51/932p; ~b! or by jumping over one location, mean
ing that the entire pattern explores the complete circle twice. T
case corresponds tok52 anda52/932p.
e
rns
ec-

if-

e
-
a

d
.
r

of spots, but also by the frequencyf 51/T, whereT is the
time needed for the whole pattern to make a complete tu
By continuously changing the anglea from 2p/n to
2p/(n11), the n-spot pattern begins to rotate with a fre
quency that increases linearly with the difference betweea
and the angle 2p/n of the stationary pattern. After a mor
complex transition state, the spots reorganize into ann
11)-spot pattern rotating in the opposite direction. The f
quency decreases until it completely stops. This correspo
to a transition where the levelk remains equal to 1. In othe
cases, patterns of different levelsk can be observed during
the transition, as described in the following example.

The transition from case 9/2 to case 5/1 is represente
Fig. 7. A circular line intercepting all the spots was samp
every 1/25 s. Then the lines are horizontally plotted one
low the other. This represents a spatiotemporal diagram.
juxtaposition of these lines shows the evolution of the patt
as the anglea is continuously decreased from 2/932p to
1/532p rad ~time increases from top to bottom!. Each spot
appears as a white strip, and its rotation speed is given by
slope of the strip. The 9/2 spots are stationary at the be
ning of the transition, but they progressively rotate as
angle is decreased. They rotate with an increasing freque
Before reaching the equilibrium staten55, k51, other dif-
ferent states can be observed in this figure and can be
lowed on the Farey tree: 24, 19, and 14 spots can be s
corresponding, respectively, to the nodes 24/5, 19/4,
14/3. In this transition, an analogy with a superposition o
right- and a left-circular-traveling wave of different ampl
tudes can be made. Each one corresponds to a different q
tity of spots. For instance, at the anglea* on Fig. 7, a right-
traveling wave of 19 spots and a left-traveling wave of
spots can be simultaneously distinguished. When the anga
moves away froma*, the amplitude of one of the wave
increases compared to the other one, which progressi
disappears. At the end of the transition, 5 spots are fo
rotating more and more slowly, until they completely sto
The frequency of the rotation can be expressed as a func
of the different parameters of the experiment. It was m
sured with a photomultiplier watching a small area of t
screen, and connected to a Fourier analyzer. The fast Fo
transform shows a spectrum of predominant frequencyf of
large amplitude, and a second frequency of smaller am
tude. During the transition, the amplitude of the first fr
quency decreases while the amplitude of the second one

se

is
TABLE II. Example of the intensityXc,k(t5qt,i )/X0 at time t5qt in the casec57 andk52. The
intensity at timet5qt is the sum of the intensities of the spoti 21 and the persistence of the spoti at the
previous loop@time (q21)t#. The sum of the intensities of all spots at a given timet5qt is (P11)qX0.

t50 t5t t52t t53t t54t t55t t56t t57t t58t t59t

i 51 1 P P2 P3 P4 P5 P6 P711 P818P P9136P2

i 52 0 0 0 0 1 5P 15P2 35P3 70P4 126P5

i 53 0 1 2P 3P2 4P3 5P4 6P5 7P6 8P711 9P819P
i 54 0 0 0 0 0 1 6P 21P2 56P3 126P4

i 55 0 0 1 3P 6P2 10P3 15P4 21P5 28P6 36P711
i 56 0 0 0 0 0 0 1 7P 28P2 84P3

i 57 0 0 0 1 4P 10P2 20P3 35P4 56P5 84P6

Total (P11)0 (P11)1 (P11)2 (P11)3 (P11)4 (P11)5 (P11)6 (P11)7 (P11)8 (P11)9
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creases and becomes predominant. On the Farey tree, fo
given anglea, each line between two nodes means thata1
spots of the first nodea1 /k1 can be found rotating at a fre
quencyf 1, or a2 spots~nodea1 /k2) can be found rotating a
another frequencyf 2 in the opposite direction. The rotatio
frequency of any of those patterns at the anglea, is given by
f a(a/k)5K(a22pk/a) whereK50.1352 is a constant tha
depends on the experimental system. This law simply me
that the rotation frequency is proportional to the distan
betweena and the angle wherea/k spots are stationary.

VI. ROLE OF DIFFUSION

Diffusion in the video feedback system is the influence
a pixel on the surrounding ones. The image of a pixel ha

FIG. 7. Illustration of a transition between 9 and 5 spots cro
ing the 14-, 19-, and 24-spot symmetries. Each spot appears
white stripe, and its rotation speed is given by the slope of
stripe. At the anglea*, a right-traveling wave of 19 spots and
left-traveling wave of 5 spots can be simultaneously distinguish
At the end of the transition, 5 spots are found rotating more
more slowly, until they completely stop.
J

gy
ny

ns
e

f
a

slightly larger size than the original pixel because of de
cusing. As the intensity of each pixel diffuses to its neig
bors, the gray level information is mixed. The characteris
length of diffusion depends on the gap between the focu
position and the defocused one where diffusion appears
our case, diffusion plays an important part in explaining t
existence of the spots. The regime associated with the
pearance of spots is located exactly betweenR,1 and R
.1, whereR is the magnification ratio, i.e., between th
behavior in which images are enlarged and the beha
where they are shrunk. The regimeR51 is thus unstable; the
image on the screen should either grow or diminish slow
Assuming that the magnification ratio isR511«, a crown
pattern should progressively disappear from the center of
screen to its edges. On the other hand, ifR is exactly equal to
1, the image should grow with a time constant depending
the defocusing. We assume that the spots can exist
when the experimental setup is such that the disappear
of the spots at the edges of the screen is exactly compens
by diffusion.

VII. CONCLUSION

This experiment is a model system to study spatial p
terns with feedback loops, such as lasers, liquid crystals
some hydrodynamic instabilities. The angular dependenc
the number of spots is shown to follow a sequence known
the Farey tree. The patterns observed have been desc
and the mechanisms of their formation are given. The la
governing the intensities of the spots, such as the freque
of circular waves, have been expressed as a function of
different parameters of the system.
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